Create_Model
- src.Create_Model.create_model(model_array, num_classes=5, input_shape=(256, 256, 3))[source]
Parameters
- model_arraynp.ndarray
List containing the parameters for each layer in the network.
- num_classesint, default=5
The number of output classes in the classification problem.
- input_shapetuple, default=(256, 256, 3)
The shape of the input data (image size and channels).
Returns
- modelkeras.Model
The constructed Keras model.
- src.Create_Model.model_summary(model)[source]
Prints the model summary and the number of trainable weights.
- src.Create_Model.train_model(train_ds, val_ds, model, epochs=30, checkpoint_filepath='checkpoints/checkpoint', early_stopping_patience=10)[source]
Trains the given model with the specified training and validation datasets.
Parameters
- train_dstf.data.Dataset
The training dataset.
- val_dstf.data.Dataset
The validation dataset.
- modelkeras.Model
The model to train.
- epochsint, default=30
The number of training epochs.
- checkpoint_filepathstr, default=”checkpoints/checkpoint”
The file path to save the model weights with the best validation accuracy.
- early_stopping_patienceint, default=10
The number of epochs with no improvement after which training will be stopped.
Returns
- modelkeras.Model
The trained model.
- historyHistory
A record of training loss values and metrics values at successive epochs.